Physicsinformed
continuiti.pde.physicsinformed
PDEs and physics-informed loss functions.
PDE
¶
PDE base class.
Example
In general, we can implement a PDE like \(\nabla v = u\) as follows:
__call__(x, u, y, v)
abstractmethod
¶
Computes PDE loss.
Usually, we have v = op(x, u, y)
, e.g., in the physics-informed loss.
PARAMETER | DESCRIPTION |
---|---|
x |
Tensor of sensor positions of shape (batch_size, x_dim, num_sensors...).
TYPE:
|
u |
Tensor of sensor values of shape (batch_size, u_dim, num_sensors...).
TYPE:
|
y |
Tensor of evaluation coordinates of shape (batch_size, y_dim, num_evaluations...).
TYPE:
|
v |
Tensor of predicted values of shape (batch_size, v_dim, num_evaluations...).
TYPE:
|
Source code in src/continuiti/pde/physicsinformed.py
PhysicsInformedLoss(pde)
¶
Physics-informed loss function for training operators in continuiti.
PARAMETER | DESCRIPTION |
---|---|
pde |
Maps evaluation coordinates \(y\) and callable \(v\) to PDE loss.
TYPE:
|
Source code in src/continuiti/pde/physicsinformed.py
__call__(op, x, u, y, _)
¶
Evaluate loss.
PARAMETER | DESCRIPTION |
---|---|
op |
Operator object.
TYPE:
|
x |
Tensor of sensor positions of shape (batch_size, x_dim, num_sensors...).
TYPE:
|
u |
Tensor of sensor values of shape (batch_size, u_dim, num_sensors...).
TYPE:
|
y |
Tensor of evaluation coordinates of shape (batch_size, y_dim, num_evaluations...).
TYPE:
|
v |
Ignored.
|
Source code in src/continuiti/pde/physicsinformed.py
Created: 2024-08-20