Transforms
continuiti.transforms
Data transformations in continuiti.
Transform(*args, **kwargs)
¶
Abstract base class for transformations of tensors.
Transformations are applied to tensors to improve model performance, enhance generalization, handle varied input sizes, facilitate specific features, reduce overfitting, improve computational efficiency or many other reasons. This class takes some tensor and transforms it into some other tensor.
PARAMETER | DESCRIPTION |
---|---|
*args |
Arguments passed to nn.Module parent class.
DEFAULT:
|
**kwargs |
Arbitrary keyword arguments passed to nn.Module parent class.
DEFAULT:
|
Source code in src/continuiti/transforms/transform.py
forward(tensor)
abstractmethod
¶
undo(tensor)
¶
Applies the inverse of the transformation (if it exists).
PARAMETER | DESCRIPTION |
---|---|
tensor |
Transformed tensor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
Tensor with the transformation undone. |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the inverse of the transformation is not implemented. |
Source code in src/continuiti/transforms/transform.py
Compose(transforms, *args, **kwargs)
¶
Bases: Transform
Handles the chained sequential application of multiple transformations.
PARAMETER | DESCRIPTION |
---|---|
transforms |
transformations that should be applied in the order they are in the list. |
*args |
Arguments of parent class.
DEFAULT:
|
**kwargs |
Arbitrary keyword arguments of parent class.
DEFAULT:
|
ATTRIBUTE | DESCRIPTION |
---|---|
transforms |
Encapsulates multiple transformations into one.
TYPE:
|
Source code in src/continuiti/transforms/compose.py
forward(tensor)
¶
Normalize(mean, std)
¶
Bases: Transform
Normalization transformation (Z-normalization).
This transformation takes a mean \(\mu\) and standard deviation \(\sigma\) to scale tensors \(x\) according to
where \(\varepsilon\) is a small value to prevent division by zero.
ATTRIBUTE | DESCRIPTION |
---|---|
epsilon |
small value to prevent division by zero (
|
PARAMETER | DESCRIPTION |
---|---|
mean |
mean used to scale tensors
TYPE:
|
std |
standard deviation used to scale tensors
TYPE:
|
Source code in src/continuiti/transforms/scaling.py
forward(x)
¶
QuantileScaler(src, n_quantile_intervals=1000, target_mean=0.0, target_std=1.0, eps=0.001)
¶
Bases: Transform
Quantile Scaler Class.
A transform for scaling input data to a specified target distribution using quantiles. This is particularly useful for normalizing data in a way that is more robust to outliers than standard z-score normalization.
The transformation maps the quantiles of the input data to the quantiles of the target distribution, effectively performing a non-linear scaling that preserves the relative distribution of the data.
PARAMETER | DESCRIPTION |
---|---|
src |
tensor from which the source distribution is drawn.
TYPE:
|
n_quantile_intervals |
Number of individual bins into which the data is categorized.
TYPE:
|
target_mean |
Mean of the target Gaussian distribution. Can be float (all dimensions use the same mean), or tensor (allows for different means along different dimensions). |
target_std |
Std of the target Gaussian distribution. Can be float (all dimensions use the same std), or tensor (allows for different stds along different dimensions). |
eps |
Small value to bound the target distribution to a finite interval.
TYPE:
|
Source code in src/continuiti/transforms/quantile_scaler.py
forward(tensor)
¶
Transforms the input tensor to match the target distribution using quantile scaling.
PARAMETER | DESCRIPTION |
---|---|
tensor |
The input tensor to transform.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
The transformed tensor, scaled to the target distribution. |
Source code in src/continuiti/transforms/quantile_scaler.py
undo(tensor)
¶
Reverses the transformation applied by the forward method, mapping the tensor back to its original distribution.
PARAMETER | DESCRIPTION |
---|---|
tensor |
The tensor to reverse the transformation on.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
The tensor with the quantile scaling transformation reversed according to the src distribution. |
Source code in src/continuiti/transforms/quantile_scaler.py
Created: 2024-08-20