Grad
continuiti.pde.grad
Functional gradients in continuiti.
Derivatives are function operators, so it is natural to define them as operators within continuiti.
The following gradients define several derivation operators (e.g., grad, div) that simplify the definition of PDEs in physics-informed losses.
Grad(shapes=None, device=None)
¶
Bases: Operator
Gradient operator.
The gradient is a function operator that maps a function to its gradient.
Source code in src/continuiti/operators/operator.py
forward(x, u, y=None)
¶
Forward pass through the operator.
PARAMETER | DESCRIPTION |
---|---|
x |
Tensor of sensor positions of shape (batch_size, x_dim, num_sensors...).
TYPE:
|
u |
Tensor of sensor values of shape (batch_size, u_dim, num_sensors...).
TYPE:
|
y |
Tensor of evaluation positions of shape (batch_size, y_dim, num_evaluations...). |
RETURNS | DESCRIPTION |
---|---|
Tensor
|
Tensor of evaluations of the mapped function of shape (batch_size, v_dim, num_evaluations...). |
Source code in src/continuiti/pde/grad.py
Div(shapes=None, device=None)
¶
Bases: Operator
Divergence operator.
The divergence is a function operator that maps a function to its divergence.
Source code in src/continuiti/operators/operator.py
forward(x, u, y=None)
¶
Forward pass through the operator.
PARAMETER | DESCRIPTION |
---|---|
x |
Tensor of sensor positions of shape (batch_size, x_dim, num_sensors...).
TYPE:
|
u |
Tensor of sensor values of shape (batch_size, u_dim, num_sensors...).
TYPE:
|
y |
Tensor of evaluation positions of shape (batch_size, y_dim, num_evaluations...). |
RETURNS | DESCRIPTION |
---|---|
Tensor
|
Tensor of evaluations of the mapped function of shape (batch_size, v_dim, num_evaluations...). |
Source code in src/continuiti/pde/grad.py
grad(u)
¶
Compute the gradient of a function.
Example
Computing the gradient of the output function of an operator:
PARAMETER | DESCRIPTION |
---|---|
u |
Function to compute the gradient of. |
RETURNS | DESCRIPTION |
---|---|
Callable[[Tensor], Tensor]
|
Function that computes the gradient of the input function. |
Source code in src/continuiti/pde/grad.py
div(u)
¶
Compute the divergence of a function.
Example
Computing the divergence of the output function of an operator:
PARAMETER | DESCRIPTION |
---|---|
u |
Function to compute the divergence of. |
RETURNS | DESCRIPTION |
---|---|
Callable[[Tensor], Tensor]
|
Function that computes the divergence of the input function. |
Source code in src/continuiti/pde/grad.py
Created: 2024-08-22