training_classical_control.environment
#
Module Contents#
Classes#
Functions#
Creates instance of InvertedPendulumEnv with some wrappers to ensure correctness, limit the number of steps and store rendered frames. |
|
Data#
API#
- training_classical_control.environment.__all__#
[‘create_inverted_pendulum_environment’, ‘simulate_environment’]
- training_classical_control.environment.create_inverted_pendulum_environment(render_mode: str | None = 'rgb_array', *, max_steps: int = 500, masspole: float = 0.1, masscart: float = 1.0, length: float = 1.0, x_threshold: float = 3, theta_threshold: float = 24, force_max: float = 10.0) gymnasium.Env [source]#
Creates instance of InvertedPendulumEnv with some wrappers to ensure correctness, limit the number of steps and store rendered frames.
Args: render_mode: Render mode for environment. max_steps: Maximum number of steps in the environment before termination. masspole: mass of the pole. masscart: mass of the cart. length: length of the pole. force_max: maximum absolute value for force applied to Cart. x_threshold: Threshold value for cart position. theta_threshold: Threshold value for pole angle.
Returns: Instantiated and wrapped environment.
- class training_classical_control.environment.SimulationResults[source]#
- frames: list[numpy.typing.NDArray]#
None
- observations: numpy.typing.NDArray#
None
- estimated_observations: numpy.typing.NDArray#
None
- actions: numpy.typing.NDArray#
None
- training_classical_control.environment.simulate_environment(env: gymnasium.Env, *, max_steps: int = 500, controller: training_classical_control.control.FeedbackController | None = None, observer: training_classical_control.control.Observer | None = None) training_classical_control.environment.SimulationResults [source]#